88 research outputs found

    P-HIP: A Multiresolution halftoning algorithm for progressive display

    Get PDF
    This thesis describes and implements an algorithmic framework for memory efficient, \u27on-the-fly\u27 halftoning in a progressive transmission environment. Instead of a conventional approach which repeatedly reconstructs the continuous tone image from memory and subsequently halftones it for display, the proposed method achieves significant memory efficiency by storing only the halftoned image and updating it in response to additional information received through progressive transmission. Thus the method requires only a single frame-buffer of bits for storage of the displayed binary image and no additional storage is required for the contone data. The additional image data received through progressive transmission is accommodated through in-place updates of the buffer. The method is thus particularly advantageous for high resolution bi-level displays where it can result in significant savings in memory. The proposed framework is implemented using a suitable multi-resolution, multi-level modification of error diffusion that is motivated by the presence of a single binary frame-buffer. Aggregates of individual display bits constitute the multiple output levels at a given resolution. This creates a natural progression of increasing resolution with decreasing bit-depth. Output images are shown to be comparable in terms of quality to those obtained from the conventional Floyd Steinberg error diffusion algorithm

    BanglaAbuseMeme: A Dataset for Bengali Abusive Meme Classification

    Full text link
    The dramatic increase in the use of social media platforms for information sharing has also fueled a steep growth in online abuse. A simple yet effective way of abusing individuals or communities is by creating memes, which often integrate an image with a short piece of text layered on top of it. Such harmful elements are in rampant use and are a threat to online safety. Hence it is necessary to develop efficient models to detect and flag abusive memes. The problem becomes more challenging in a low-resource setting (e.g., Bengali memes, i.e., images with Bengali text embedded on it) because of the absence of benchmark datasets on which AI models could be trained. In this paper we bridge this gap by building a Bengali meme dataset. To setup an effective benchmark we implement several baseline models for classifying abusive memes using this dataset. We observe that multimodal models that use both textual and visual information outperform unimodal models. Our best-performing model achieves a macro F1 score of 70.51. Finally, we perform a qualitative error analysis of the misclassified memes of the best-performing text-based, image-based and multimodal models.Comment: EMNLP 2023 (main conference

    The Spatial Product of Arveson Systems is Intrinsic

    Full text link
    We prove that the spatial product of two spatial Arveson systems is independent of the choice of the reference units. This also answers the same question for the minimal dilation the Powers sum of two spatial CP-semigroups: It is independent up to cocycle conjugacy

    Restricted Interval Valued Neutrosophic Sets and Restricted Interval Valued Neutrosophic Topological Spaces

    Get PDF
    In this paper we introduce the concept of restricted interval valued neutrosophic sets (RIVNS in short). Some basic operations and properties of RIVNS are discussed. The concept of restricted interval valued neutrosophic topology is also introduced together with restricted interval valued neutrosophic finer and restricted interval valued neutrosophic coarser topology. We also define restricted interval valued neutrosophic interior and closer of a restricted interval valued neutrosophic set. Some theorems and examples are cites. Restricted interval valued neutrosophic subspace topology is also studied

    A Hardware-Efficient and Reconfigurable UFMC Transmitter Architecture With its FPGA Prototype

    Full text link
    [EN] Universal-filtered multicarrier (UFMC) is one of the potential candidates for 5G multicarrier waveforms due to its several attractive features such as suppressed out-of-band radiation to the nearby sub-band. However, the hardware realization of UFMC systems is limited by a large number of arithmetic units for inverse fast Fourier transform (IFFT) and pulse shaping filters. In this letter, we propose an architecture that presents a refreshing approach toward designing a low-complexity architecture for the baseband UFMC transmitter with Dolph-Chebyshev filter. Compared to the read-only-memory (ROM)-based state-of-the-art, the proposed architecture requires less number of ROM locations and has the flexibility to externally select the inverse discrete Fourier transform (IDFT)-size, number of sub-bands, and number of subcarriers in a sub-band. Moreover, we implement the proposed architecture on a commercially available Virtex-5 field-programmable gate array (FPGA) device for testing and analyzing the baseband UFMC signal. Finally, the XILINX post-route results are found comparable with MATLAB simulations.Kumar, V.; Mukherjee, M.; Lloret, J. (2020). A Hardware-Efficient and Reconfigurable UFMC Transmitter Architecture With its FPGA Prototype. IEEE Embedded Systems Letters. 12(4):109-112. https://doi.org/10.1109/LES.2019.296185010911212

    Reconfigurable Architecture of UFMC Transmitter for 5G and Its FPGA Prototype

    Full text link
    [EN] A universal-filtered multicarrier (UFMC) system that is a generalization of filtered orthogonal frequency-division multiplexing (OFDM) and filter-bank-based multicarrier is being considered as a potential candidate for fifth-generation due to its robustness against intercarrier interference as in cyclic-prefix-based OFDM systems. However, real-time hardware realization of multicarrier systems is limited by a large number of arithmetic units for inverse fast Fourier transform and pulse-shaping filters. In this paper, we aim to propose a low-complexity and reconfigurable architecture for a baseband UFMC transmitter. To the best of our knowledge, the proposed architecture is the first reconfigurable architecture that has the flexibility to choose the number of subcarriers in a subband without any change in hardware resources. In addition, the proposed architecture selects the filter from a group of filters with a single selection line. Moreover, we use a commercially available field-programmable gate array device for real-time testing and analyzing the baseband UFMC signal. From the extensive experiments, we study the occupied bandwidth, main-lobe power, and sidelobe power of the baseband signal with different filters in real-time scenarios. Finally, we measure the quantization error in baseband signal generation for the proposed UFMC transmitter architecture and find comparable with the error bound.Kumar, V.; Mukherjee, M.; Lloret, J. (2020). Reconfigurable Architecture of UFMC Transmitter for 5G and Its FPGA Prototype. IEEE Systems Journal. 14(1):28-38. https://doi.org/10.1109/JSYST.2019.2923549S283814
    corecore